UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

27 June 2013

Tritium Laboratory 4600 Rickenbacker Causeway Fax:305-421-4112 Miami, Florida 33149-1031

Ph: 305-421-4100 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT #683

SWAB DATE: 19 June 2013

R/V Endeavor & rad vans

James D. Happell

Distribution: **SWAB** Committee William Fanning

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for 3 H and 14 C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m². Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m². An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m 2)	14 C (dpm m 2)	Recommendations
A	< 500	< 50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

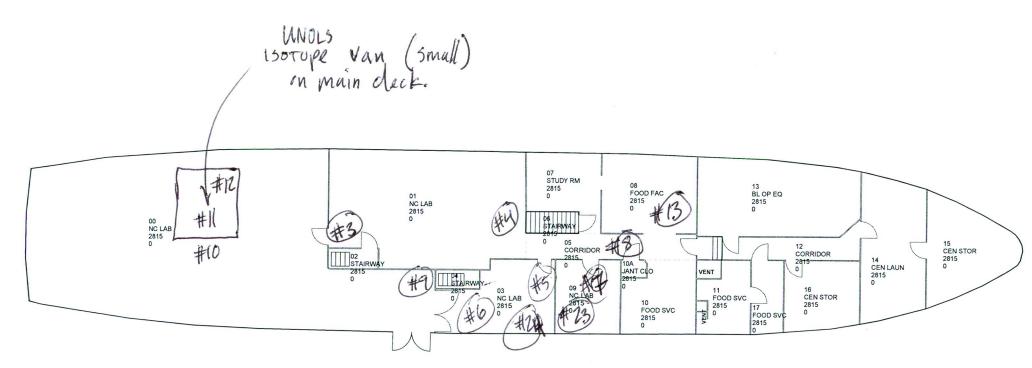
³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

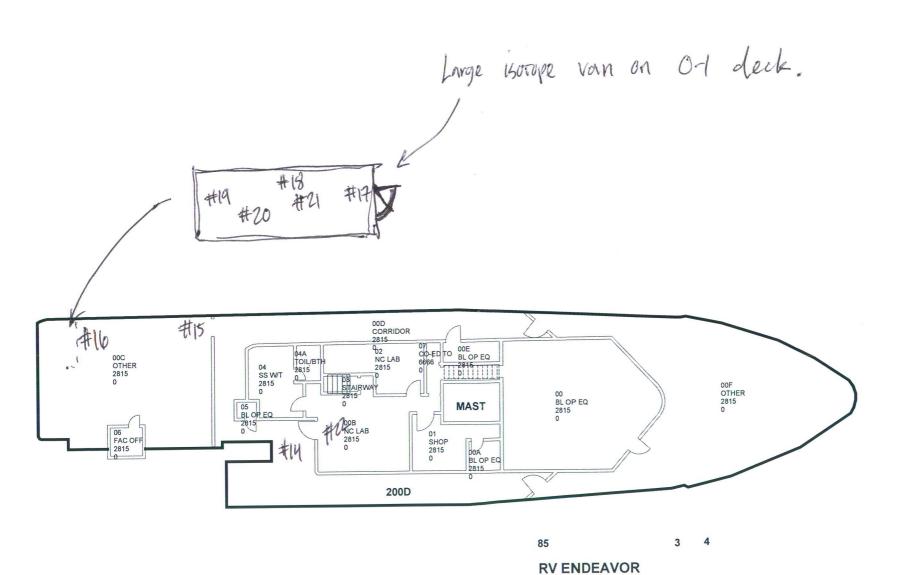

DATE: 19 June 2013

LOCATION: Gulfport, MS VESSEL/LAB: R/V Endeavor TECHNICIAN: Ryan Sibert

ample # Sample Identification	³ H dpn	n/m^2	¹⁴ C dpı	m/m ²
	activity	error	activity	error
1 1st Vial Background	0	± 0	0	± 0
2 Initial bucket blank	13	± 71	0	± 0
		XA	7	X7
	X	XX	X	Xd
	- I - &	7	X	2 2
	i š		ð	9 9
			•	0 6
				9 9
				2 1
		7 7		
	_			
	- I - &	7 7		2 2
	i š	7 2	- 5	5 6
17 Floor of rad van next to door	316	± 65	*51	\pm 27
18 Stainless countertop in rad van	45	± 45	18	\pm 30
19 Floor of rad lab next to fume hood	402	± 70	*50	± 25
20 Wooden benchtop in rad lab	4	± 13	22	± 34
21 Isotope fridge door in rad lab	*527	± 76	*66	± 26
	_			
		8 8		
	The state of the s	7 7	8	X 1
	1	7		_
		_		_
			3	

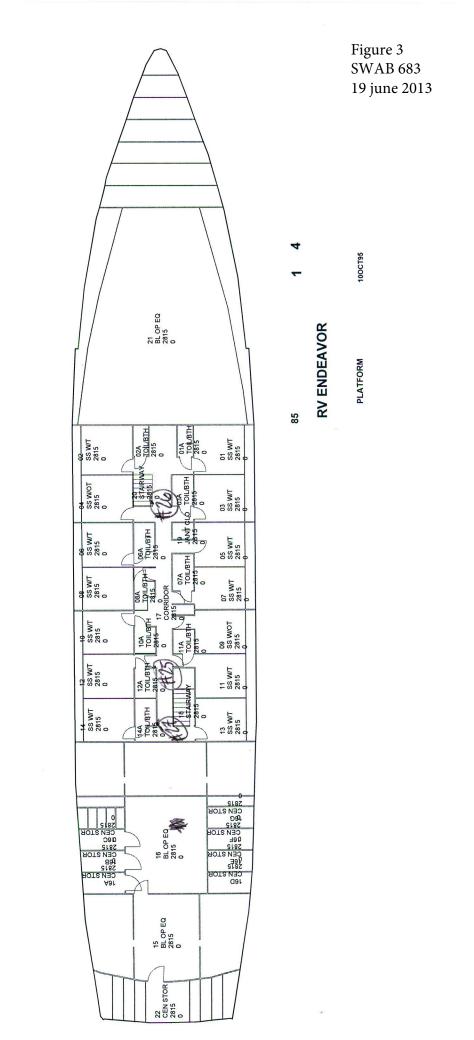
Comments

Please note that the error reported for each isotope is the two-standard deviation counting error. All areas tested on the ship were free from radioisotope activity that requires cleaning. Minor ¹⁴C and ³H contamination was found in the vans. No cleaning is necessary unless natural abundance work is to be conducted in the vans. However is is recommended that contaminated deck areas in the vans be cleaned to prevent tracking contamination into the ship.


RV ENDEAVOR

MAIN/BREAK

85


10OCT95

2

WHALEBACK

10OCT95

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031 Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT # 661

SWAB DATE: 30 November 2012

East Coast Pool Van #2408-04

Dr. James D. Happell Associate Research Professor

Distribution: SWAB Committee Tim Deering

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for ³H and ¹⁴C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m². Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m². An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m 2)	14 C (dpm m 2)	Recommendations
A	< 500	<50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

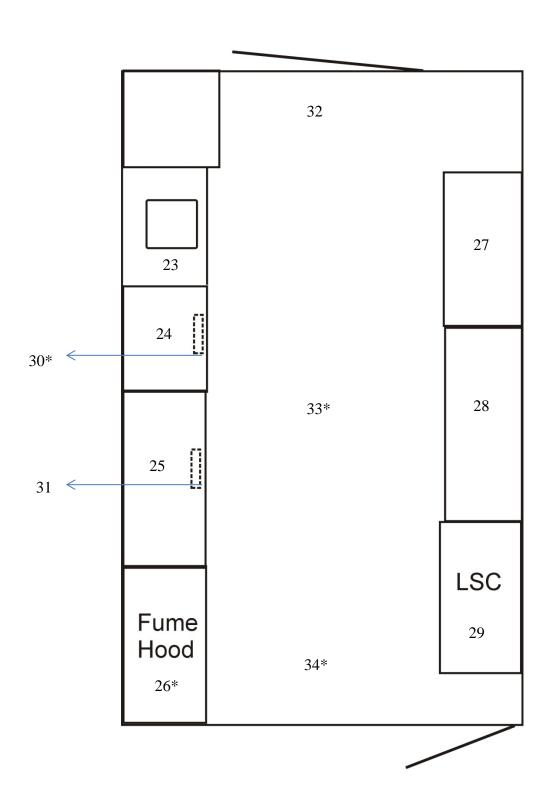
¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

LOCATION: Lewes, DE DATE: 30 November 2012 VESSEL: UNOLS Van 2408-04 TECHNICIAN: Cecilia Roig


Sample # Sample Identification	³ H dpr	³ H dpm/m ²		¹⁴ C dp	m/m	1 ²
	activity	(error	activity	(error
1 1st Vial Bkgnd	0	±	0	0	±	0
22 Bucket blank	0	\pm	0	0	\pm	0
23 Sink area	229	\pm	59	22	\pm	23
24 Bench top left of sink	204	\pm	54	47	\pm	30
25 Bench top right of hood	240	±	60	26	\pm	24
26 Inside hood	121	\pm	25	*439	\pm	49
27 Bench top across sink	19	±	30	23	\pm	34
28 Bench top left of LSC	47	\pm	48	0	\pm	-59
29 Top of LSC	85	±	53	1	\pm	7
30 Inside fridge	*841	\pm	88	35	\pm	16
31 Inside freezer	157	\pm	54	21	\pm	25
32 Deck at entrance next to sink	365	\pm	64	63	\pm	29
33 Deck center of van	*1,300	\pm	101	*159	\pm	30
34 Deck at entrance next to hood	*1,282	\pm	102	*91	\pm	23
35 Bucket blank	0	±	0	0	\pm	0

Comments

Please note that the error reported for each isotope is the two-standard deviation counting error. Minor ³H and ¹⁴C contamination found in van. Van must be cleaned before any natural tracer work. Deck areas should be cleaned to prevent tracking contamination into ship.

30 November 2012

UNOLS VAN 2408-04

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031 Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT # 650

SWAB DATE: 18 October 2012

East Coast Van Pool Van #2408-04

Dr. James D. Happell Associate Research Professor

Distribution: SWAB Committee Tim Deering

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for ³H and ¹⁴C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m². Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m². An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m 2)	14 C (dpm m ²)	Recommendations
A	< 500	<50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

LOCATION: Lwews, Delaware

VESSEL: Van #2408-04

DATE: 18 October 2012

TECHNICIAN: Jim Happell

Sample # Sample Identification	³ H dpr	³ H dpm/m ²			¹⁴ C dpm/m ²		
	activity	(error	activity	(error	
1 1st Vial Bkgnd	0	±	0	0	±	0	
2 Initial bucket blank	26	\pm	23	36	\pm	30	
3 Inside freezer	144	\pm	38	*55	\pm	29	
4 Inside refrigerator	61	±	32	33	±	29	
5 Inside fume hood	53	\pm	29	47	\pm	31	
6 Stainless bench top above refrigerator	80	±	36	33	±	28	
7 Stainless bench top above freezer	72	\pm	32	49	\pm	30	
8 Stainless bench top around sink	47	\pm	30	33	\pm	29	
9 Wooden bench top next to LSC	58	\pm	33	25	\pm	28	
10 Wooden bench top across from sink	53	\pm	24	*86	\pm	33	
11 Deck near double doors	481	\pm	58	*65	\pm	24	
12 Center deck	*647	\pm	65	*105	\pm	27	
13 Deck near single door	221	\pm	45	40	±	25	
14 Intermediate bucket blank	15	\pm	24	18	\pm	30	

Comments

Please note that the error reported for each isotope is the two-standard deviation counting error.

Minor ³H and ¹⁴C contamination found in the van

Cleaning of deck is recommended to prevent tracking contamination out of van.

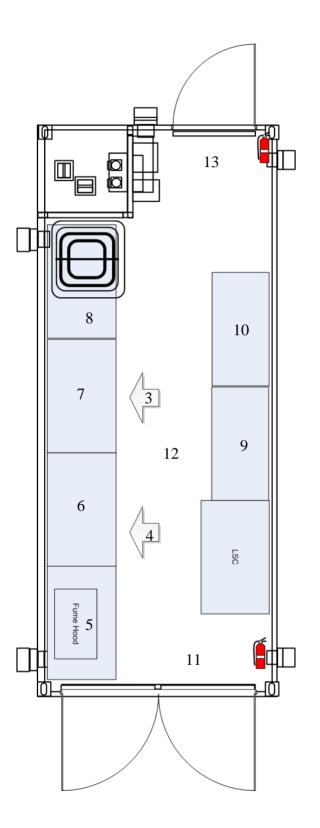


Figure 1 SWAB #650 18 October 2012

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

21 November 2011

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031 Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT #610

SWAB DATE: 14 November 2011

R/V Hugh Sharp and Vans

James D. Happell

Distribution: SWAB Committee Tim Deering

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for 3H and ^{14}C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m². Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m². An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m 2)	14 C (dpm m 2)	Recommendations
A	< 500	< 50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

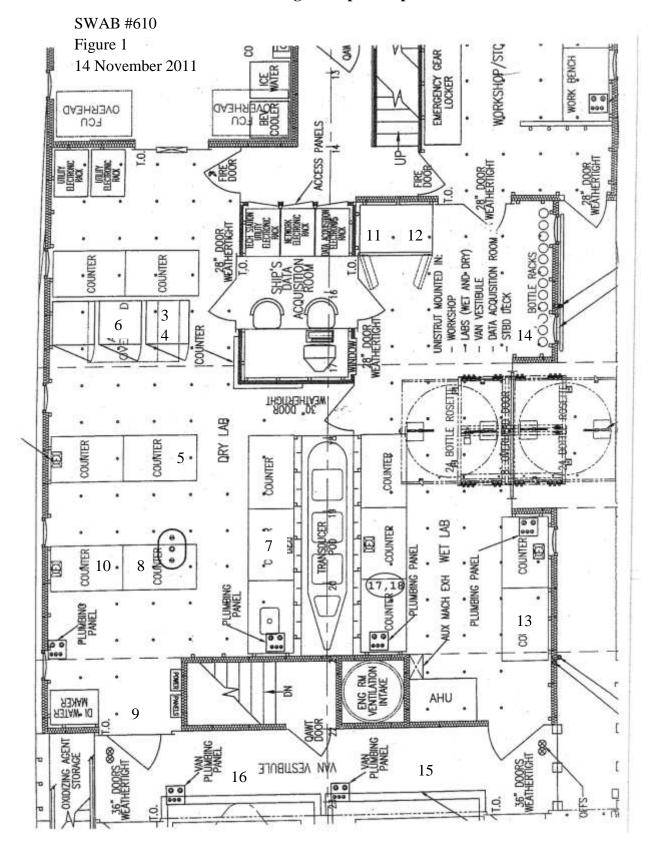
Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

LOCATION: Lewes, Delaware

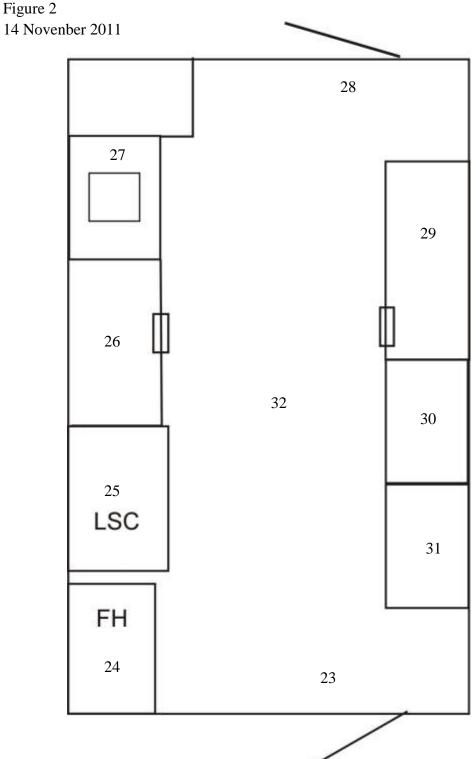
VESSEL/LAB: *Hugh Sarp and Vans*DATE: 14 November 2011

TECHNICIAN: Charlene Grall

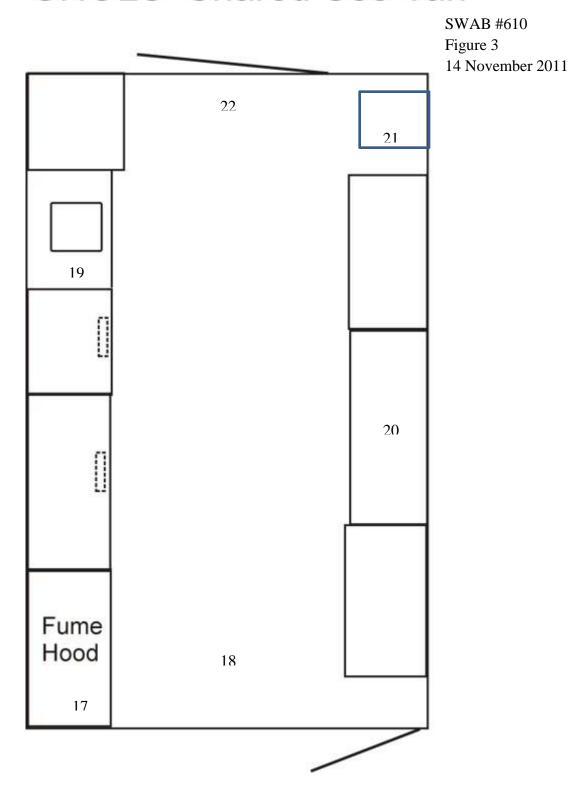

Sample # Sample Identification	³ H dpn	n/m^2	¹⁴ C dp	m/m ²
	activity	error	activity	error
1 1st Vial Bkgnd	0	± 0	0	± 0
2 Initial bucket blank C.O. # 1	25	± 106	0	± 0
Main Lab (see Figure 1)				
		= =		
			7	
		1 1		
	5	5 7	7	i =
Wet Lab (see Figure 1)			_	
		= =		
Shared Use Van (see Figure 2)				
Shared Ose van (see Figure 2)			•	
				i i
				•
Radioisotope Van (see Figure 3)			_	
		17	7	
		1 -		
		= =	7	5 =
				5 =
		5 3		

Sample # Sample Identification	³ H dpn	n/m²	2	¹⁴ C dp	m/m	2
	activity	(error	activity		error
Radioisotope Van #2408-04 (see Figure 4)						
34 Initial bucket blank C.O. # 2	20	\pm	85	0	\pm	0
35 Inside fume hood	43	\pm	39	34	\pm	35
36 Benchtop adjacent to sink	2	\pm	20	6	\pm	35
37 Benchtop adjacent to LSC	12	\pm	37	9	\pm	34
38 Deck at entrance near fume hood	*1266	\pm	106	46	\pm	16
39 Deck at entrance near sink	265	±	63	36	\pm	27
Radioisotope Van #625.5.02 (see Figure 5)						
		ā				

Comments


Please note that the error reported for each isotope is the two-standard deviation counting error. All areas tested on the R/V Hugh R. Sharp were free of radioisotope contamination that requires cleaning. However several samples (6, 7, 9, 13, and 16) have above background ³H suggesting that ³H has been transported from the rad van into the ship. Minor ¹⁴C and minor to moderate ³H contamination was found inside the Rad Van on the deck and around the sink area. We suggest cleaning the deck and all contaminated areas. The Shared Use Van and Rad Vans 2408-04 and 625.5.02 also had some minor ³H and/or ¹⁴C contamination on their decks. The Shared Use Van should be cleaned before any use, and we recommend that the decks of the vans 2408-04 and 635.5.02 be cleaned to help prevent tracking of contamination into the ship.

RV Hugh Sharp Lab Spaces



University of Delaware Radioisotope Van

SWAB #610 Figure 2

UNOLS Shared Use Van

UNOLS VAN 2408-04

SWAB #610 Figure 4 14 November 2011 39 36 37 LSC Fume 38 Hood 35

UNOLS VAN 625.5.02

SWAB #610 Figure 5 14 November 2011 44 42 41 LSC Fume 43 Hood 40

SWAB REPORT # 586

SWAB DATE: 13 July 2011

R/V Hugh R. Sharp and Vans

James D. Happell

Distribution: SWAB Committee Tim Deering

LOCATION: Cambridge, MD; Lewes, DL DATE: 13 July 2011

VESSEL/LAB: R/V Hugh R. Sharp and Vans

TECHNICIAN: Charlene Grall

Sample # Sample Identification	³ H dpm/m ²		¹⁴ C dpm	/m ²
		ror	activity	error
Main Lab (See Figure 1)				
Wet Lab (See Figure 1)				
General Purpose Van (See Figure 2)				

	³ H dpm/m ²			¹⁴ C dp	m/n	\mathbf{n}^2
	activity error		activity		error	
		•		Ö	•	
				_		
Radioisotope Van (See Figure 3)		_		_	_	
		•	9		•	
		X			X	
		X	4		X	
		X			X	7
		X	7		X	
		X			X	
		X	7		X	
		X			X	
		X			X	
		X		7	X	
		X		X	X	
Shared Use Van (See Figure 4)						
41 Initial bucket blank C.O. # 2	2	±	278	33	\pm	110
42 Sink area	288	\pm	24	0	\pm	399
43 Benchtop adjacent to sink	122	±	48	6	\pm	300
44 Benchtop across from LSC	114	±	49	4	\pm	357
45 Inside fume hood	82	\pm	75	0	\pm	0
46 Benchtop across from sink	16	\pm	230	13	\pm	257
47 Benchtop adjacent to LSC	43	±	109	11	\pm	263
48 Inside refrigerator	*1672	\pm	7	*98	\pm	23
49 Inside freezer	*558	±	14	28	\pm	65
50 Deck below fume hood at d-door entrance	*3461	\pm	5	29	\pm	20
51 Deck at single door entrance	*871	±	11	0	\pm	83
52 Final bucket blank C.O. # 2	7	±	734	0	±	5922

Comments

