UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031 Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT # 651

SWAB DATE: 18 October 2012

East Coast Van Pool Van #625.5.02

Dr. James D. Happell Associate Research Professor

Distribution: SWAB Committee Tim Deering

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for ³H and ¹⁴C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m^2 . Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m^2 . An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m ²)	14 C (dpm m ²)	Recommendations
А	<500	<50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

LOCATION: Lwews, Delaware VESSEL: Van #625.5.02

DATE: 18 October 2012 TECHNICIAN: Jim Happell

Sample # Sample Identification	³ H dpm/m ²			¹⁴ C dpm/m ²		
	activity	e	error	activity		error
1 1st Vial Bkgnd	0	±	0	0	±	0
14 Intermediate bucket blank	15	±	24	18	±	30
15 Inside freezer	41	\pm	31	16	\pm	27
16 Inside refrigerator	48	\pm	30	33	\pm	29
17 Inside fume hood	90	\pm	36	28	\pm	27
18 Stainless bench top above refrigerator	38	\pm	28	34	\pm	30
19 Stainless bench top above freezer	59	\pm	31	44	\pm	30
20 Stainless beench top around sink	46	\pm	32	17	\pm	27
21 Wooden bench top next to LSC	40	\pm	29	30	\pm	29
22 Wooden bench top across from sink	39	\pm	26	42	\pm	30
23 Deck near double doors	82	\pm	31	*67	\pm	31
24 Center deck	59	\pm	31	33	\pm	29
25 Deck near single door	62	\pm	33	38	\pm	29
26 Intermediate bucket blank	33	\pm	26	31	±	30

Comments

Please note that the error reported for each isotope is the two-standard deviation counting error.

Minor ¹⁴C contamination found in the van

Cleaning of deck is recommended to prevent tracking contamination out of van.

East Coast Van Pool Van #625.5.02

Figure 1 SWAB #651 18 October 2012

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

3 April 2012

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031 Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.ee

SWAB REPORT # 620

SWAB DATE: 24 March 2012

R/V Roger Revelle

James D. Happell

Distribution: SWAB Committee Gary Lain Scripps Swab Committee

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for 3 H and 14 C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities a reported in dpm/m^2 . Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m^2 . An error larger than the activity indicates that the activit is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m ²)	14 C (dpm m ²)	Recommendations
А	<500	<50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will disso carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or ema

LOCATION: Henderson, Australia VESSEL/LAB: *R/V Roger Revelle* DATE: 24 March 2012 TECHNICIAN: Cecilia Roig

Sample # Sample Identification	³ H dj	$^{3}\text{H dpm/m}^{2}$ $^{14}\text{C dp}$		om/m ²		
	activity	error	or activity erro			
1 1st Vial Bkgnd	0	± 0	0	± 0		
2 Initial bucket blank C.O. #1	0	± 0	38	± 37		
	ē					
		ē				
	ē	Ō		• •7		
	ē	ēē		ēē		
Bio/Analytical Lab (Figure 1)						
		•		• •		
		ēē				
		ē				
Climate Control Chambers (Figure 1)						

Sample # Sample Identif	ication	³ H dr	om/m ²	¹⁴ C d	pm/n	\mathbf{n}^2
		activity	erro	r activity	e	error
<u>Hydro Lab (Fig</u>	<u>ure 2)</u>					
			• (
			• (
					-	
					-	
					-	
Wet Lab (Figur	<u>e 2)</u>					
			• •			
			• (
			•			
			• (
			• •			
UNOLS Shared	-Use Van 625.5.02 (Figu	re 3)				
51 Sink area	<u> </u>	0	±	22	±	36
52 Bench top abov	e fridge	32	± 4	1 10	±	29
53 Bench top abov	e freezer	0	±	32	±	36
54 Inside hood		0	±	43	\pm	35
55 Deck inside ent	rance next to hood	25	± 29	9 38	±	34
56 Top of LSC		18	± 14	4 *111	±	37
57 Bench top next	to LSC	0	±) 4	±	37
58 Bench top acros	ss sink	0	±	0 15	±	34
59 Inside freezer		0	±	0 29	±	35
60 Inside fridge		18	± 4	1 6	±	29
61 Deck center of	van	0	±	0 17	\pm	35
62 Deck inside ent	rance next to sink	0	±	0 46	\pm	36
63 Final bucket bla	ank C.O. #2	2	± 12	2 16	\pm	34

Comments

Please note that the error reported for each isotope is the two-standard deviation counting error. All areas tested on the ship were free from radioisotope activity that requires cleaning. Only one sample in the van showed minor ¹⁴C activity and this area will need to be cleaned before any natural tracer work.

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

13 February 2012

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031

Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT # 615

SWAB DATE: 8 February 2012

University of Delaware Radioisotope Van

James D. Happell

Distribution: SWAB Committee Tim Deering

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for 3 H and 14 C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m^2 . Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m^2 . An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m ²)	14 C (dpm m ²)	Recommendations
А	<500	<50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

LOCATION: Lewes, Delaware VESSEL/LAB: UDE Radioisotope Van

DATE: 8 February 2012 TECHNICIAN: Cecilia Roig

Sample # Sample Identification	³ H dpn	³ H dpm/m ²		¹⁴ C dpm/m ²		
	activity		error	activity		error
1 1st Vial Bkgnd	0	±	0	0	±	0
2 Initial bucket blank	3	±	2	1	±	0
3 Sink area	*1542	±	108	*56	±	15
4 Benchtop above freezer	461	±	67	*72	±	27
5 Benchtop across refrigerator	161	±	49	25	±	24
6 Benchtop across LSC	24	±	30	27	±	31
7 Deck inside entrance close to sink	*4732	±	183	*137	±	16
8 Inside freezer	163	±	50	30	±	26
9 Inside refrigerator	252	±	54	*56	\pm	28
10 Deck center of van	*9528	±	262	*240	±	18
11 Inside fume hood	42	±	33	37	\pm	31
12 Benchtop above fridge	*621	±	78	23	\pm	14
13 Deck inside entrance next to hood	*1277	±	105	*100	±	23
14 Final bucket blank	0	±	0	50	\pm	34

Comments

Please note that the error reported for each isotope is the two-standard deviation counting error. Although the van was cleaned after SWAB #612 deck areas still show contamination. It is recommended van deck is cleaned again to prevent tracking contamination into the ship.

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

21 November 2011

Tritium Laboratory 4600 Rickenbacker Causeway Miami, Florida 33149-1031 Ph: 305-421-4100 Fax:305-421-4112 E-mail: Tritium@rsmas.miami.edu

SWAB REPORT # 610

SWAB DATE: 14 November 2011

R/V Hugh Sharp and Vans

James D. Happell

Distribution: SWAB Committee Tim Deering

COMMENTS TO SWAB REPORTS

Typical LSC instrument background values for 3 H and 14 C are 2 and 5 cpm, respectively. The LSC is a Tricarb 2910 TR with the low level counting option.

All samples are counted for 60 minutes, the instrument background is subtracted, and activities are reported in dpm/m^2 . Bucket blank activities are not subtracted. Counting errors (2 standard deviations) are also reported in dpm/m^2 . An error larger than the activity indicates that the activity is not significantly different from zero.

Criteria for SWAB Results

Category	3 H (dpm/m ²)	14 C (dpm m ²)	Recommendations
А	<500	<50	No action
B*	500-10,000	50-10,000	Needs cleaning before any natural tracer work. Decks in radiation vans with activities above 1000 dpm/m2 should be cleaned.
C**	10,000-100,000	10,000-50,000	Must be cleaned before any use.
D***	>100,000	>50,000	May be a health hazard. Notify local radiation safety official.

Note: ¹⁴C and ³⁵S have peak energies of 156 and 167 KeV, respectively; thus ³⁵S will be registered as ¹⁴C by our counting techniques. Categories A, B and C are not a health hazard.

<u>Recommended Cleaning Proceedure</u> Wearing ordinary household rubber gloves:

³H: Wash and scrub with radioactive cleanup detergent such as COUNT-OFF (50 ml COUNT-OFF to 4 liters of water), using sponges to distribute solution and reabsorb it.

¹⁴C: Wash with 1% sulfuric or 2% hydrochloric (muriatic) acid with good ventilation (will dissolve carbonates, releasing ¹⁴CO₂). Follow up with wash as if for ³H.

Disposal of Cleaning Materials (gloves, sponges, etc)

Categories A & B dispose as ordinary garbage, C & D dispose in radiation waste system.

Note: If category C or D is encountered, we try to notify the insitution promptly by phone or email.

LOCATION: Lewes, Delaware VESSEL/LAB: *Hugh Sarp and Vans*

DATE: 14 November 2011 TECHNICIAN: Charlene Grall

Sample # Sample Identification	³ H dpn	n/m ²	¹⁴ C dpm/m ²		
	activity	error	activity	error	
1 1st Vial Bkgnd	0	± 0	0	± 0	
2 Initial bucket blank C.O. # 1	25	± 106	0	± 0	
Main Lab (see Figure 1)					
			Ō	ŌŌ	
				ŌŌ	
		• •			
Wet Lab (see Figure 1)					
				• •	
Shared Use Van (see Figure 2)					
				• •	
		• •			
		• •		• •	
Radioisotope Van (see Figure 3)			_		
			_		

Comments

Please note that the error reported for each isotope is the two-standard deviation counting error. All areas tested on the R/V Hugh R. Sharp were free of radioisotope contamination that requires cleaning. However several samples (6, 7, 9, 13, and 16) have above background ³H suggesting that ³H has been transported from the rad van into the ship. Minor ¹⁴C and minor to moderate ³H contamination was found inside the Rad Van on the deck and around the sink area. We suggest cleaning the deck and all contaminated areas. The Shared Use Van and Rad Vans 2408-04 and 625.5.02 also had some minor ³H and/or ¹⁴C contamination on their decks. The Shared Use Van should be cleaned before any use, and we recommend that the decks of the vans 2408-04 and 635.5.02 be cleaned to help prevent tracking of contamination into the ship.

UNOLS VAN 625.5.02

SWAB #610

Figure 5

14 November 2011

Tritium Laboratory 16 August 2011

SWAB REPORT # 592

SWAB DATE: 10 August 2011

R/V Hugh R. Sharp and Radioisotope Vans

James D. Happell

Distribution: SWAB Committee Tim Deering

LOCATION: Lewes, DE VESSEL: *R/V Hugh R. Sharp* DATE: 10 August 2011 TECHNICIAN: Charlene Grall

ample # Sample Identification ³ H dpm/m		n/m ²	¹⁴ C dpm/m ²			
	activity	error	activity	error		
1 1st Vial Bkgnd	0	± 0	0	± 0		
2 Initial bucket blank C.O. # 1	0	± 0	24	± 36		
Main Lab (see Fig. 1)						
		•				
		i i	ē	ŏŏ		
		• •	=	ŏŏ		
		: 3				
		ē		ēē		
Wet Lab (see Fig. 1)						
		• •				
			=			
			5	ŏŏ		
	•					
	Ē	• •	Ē	i i		
	-					
University of Delaware Radiation Van (see Fig. 2)			_			
			Ξ			
				ēē		

Sample # Sample Identification	³ H dpn	n/m ²	¹⁴ C dp	m/m	m/m^2	
	activity	erro	r activity		error	
	•		9 🔴			
Van Pool Radiation Van (see Fig. 3)						
37 Initial Bucket blank (CO#2)	30	± 4	6 9	±	30	
38 Benchtop across from sink	0	±	0 47	±	37	
39 Benchtop adjacent to LSC	16	± 2	3 45	±	36	
40 Top of LSC	0	±	*183	±	42	
41 Inside and adjacent to fume hood	72	± 5	2 17	\pm	29	
42 Sink area	0	±	0 *97	\pm	40	
43 Benchtop adjacent to sink	0	±	0 *89	\pm	40	
44 Benchtop adjacent to fume hood	0	±	0 49	\pm	38	
45 Inside refrigerator	0	±	0 35	±	38	
46 Inside freezer	0	\pm	0 31	±	37	
47 Deck at double-door entrance	34	± 1	5 *230	±	43	
48 Deck inside single door entrance by sink	109	± 3	*253	±	44	
49 Final Bucket blank (CO#2)	0	\pm	0 0	±	0	

Comments

Figure 2. SWAB #592 10 August 2011

University of Delaware Radioisotope Van

Figure 3. SWAB #592 10 August 2011

Van Pool Radiation Van

